Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index

نویسندگان

  • Hui-Min Wang
  • Ching-Lin Hsiao
  • Ai-Ru Hsieh
  • Ying-Chao Lin
  • Cathy S. J. Fann
چکیده

Complex diseases are typically caused by combinations of molecular disturbances that vary widely among different patients. Endophenotypes, a combination of genetic factors associated with a disease, offer a simplified approach to dissect complex trait by reducing genetic heterogeneity. Because molecular dissimilarities often exist between patients with indistinguishable disease symptoms, these unique molecular features may reflect pathogenic heterogeneity. To detect molecular dissimilarities among patients and reduce the complexity of high-dimension data, we have explored an endophenotype-identification analytical procedure that combines non-negative matrix factorization (NMF) and adjusted rand index (ARI), a measure of the similarity of two clusterings of a data set. To evaluate this procedure, we compared it with a commonly used method, principal component analysis with k-means clustering (PCA-K). A simulation study with gene expression dataset and genotype information was conducted to examine the performance of our procedure and PCA-K. The results showed that NMF mostly outperformed PCA-K. Additionally, we applied our endophenotype-identification analytical procedure to a publicly available dataset containing data derived from patients with late-onset Alzheimer's disease (LOAD). NMF distilled information associated with 1,116 transcripts into three metagenes and three molecular subtypes (MS) for patients in the LOAD dataset: MS1 (n1=80), MS2 (n2=73), and MS3 (n3=23). ARI was then used to determine the most representative transcripts for each metagene; 123, 89, and 71 metagene-specific transcripts were identified for MS1, MS2, and MS3, respectively. These metagene-specific transcripts were identified as the endophenotypes. Our results showed that 14, 38, 0, and 28 candidate susceptibility genes listed in AlzGene database were found by all patients, MS1, MS2, and MS3, respectively. Moreover, we found that MS2 might be a normal-like subtype. Our proposed procedure provides an alternative approach to investigate the pathogenic mechanism of disease and better understand the relationship between phenotype and genotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

CoDiNMF: Co-clustering of Directed Graphs via NMF

Co-clustering computes clusters of data items and the related features concurrently, and it has been used in many applications such as community detection, product recommendation, computer vision, and pricing optimization. In this paper, we propose a new co-clustering method, called CoDiNMF, which improves the clustering quality and finds directional patterns among co-clusters by using multiple...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

خوشه‌بندی داده‌های بیان‌ژنی توسط عدم تشابه جنگل تصادفی

Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012